Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-37693409

RESUMO

Parkinson's disease (PD) is characterized by the aggregation of α-synuclein into Lewy bodies and Lewy neurites in the brain. Microglia-driven neuroinflammation may contribute to neuronal death in PD, however the exact role of microglia remains unclear and has been understudied. The A53T mutation in the gene coding for α-synuclein has been linked to early-onset PD, and exposure to A53T-mutant human α-synuclein increases the potential for inflammation of murine microglia. To date, its effect has not been studied in human microglia. Here, we used 2-dimensional cultures of human iPSC-derived microglia and transplantation of these cells into the mouse brain to assess the effects of the A53T mutation on human microglia. We found that A53T-mutant human microglia had an intrinsically increased propensity towards pro-inflammatory activation upon inflammatory stimulus. Additionally, A53T mutant microglia showed a strong decrease in catalase expression in non-inflammatory conditions, and increased oxidative stress. Our results indicate that A53T mutant human microglia display cell-autonomous phenotypes that may worsen neuronal damage in early-onset PD.

2.
BMC Biol ; 20(1): 115, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581583

RESUMO

BACKGROUND: Activated Cdk5 regulates a number of processes during nervous system formation, including neuronal differentiation, growth cone stabilization, and axonal growth. Cdk5 phosphorylates its downstream substrates located in axonal growth cones, where the highly expressed c-Jun N-terminal kinase (JNK)-interacting protein1 (JIP1) has been implicated as another important regulator of axonal growth. In addition, stringent control of the level of intracellular domain of Notch1 (Notch1-IC) plays a regulatory role in axonal outgrowth during neuronal differentiation. However, whether Cdk5-JIP1-Notch1 cooperate to regulate axonal outgrowth, and the mechanism of such joint contribution to this pathway, is presently unknown, and here we explore their potential interaction. RESULTS: Our interactome screen identified JIP1 as an interactor of p35, a Cdk5 activator, and we sought to explore the relationship between Cdk5 and JIP1 on the regulation of axonal outgrowth. We demonstrate that JIP1 phosphorylated by Cdk5 at Thr205 enhances axonal outgrowth and a phosphomimic JIP1 rescues the axonal outgrowth defects in JIP1-/- and p35-/- neurons. Axonal outgrowth defects caused by the specific increase of Notch1 in JIP1-/- neurons are rescued by Numb-mediated inhibition of Notch1. Finally, we demonstrate that Cdk5 phosphorylation of JIP1 further amplifies the phosphorylation status of yet another Cdk5 substrate E3-ubiquitin ligase Itch, resulting in increased Notch1 ubiquitination. CONCLUSIONS: Our findings identify a potentially critical signaling axis involving Cdk5-JIP1-Itch-Notch1, which plays an important role in the regulation of CNS development. Future investigation into the way this pathway integrates with additional pathways regulating axonal growth will further our knowledge of normal central nervous system development and pathological conditions.


Assuntos
Neurônios , Transdução de Sinais , Células Cultivadas , Neurônios/metabolismo , Fosforilação , Transdução de Sinais/fisiologia
3.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514545

RESUMO

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cell-derived cerebral MPS in a systemically circulated common culture medium containing CD4+ regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivo-like behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Encéfalo/metabolismo , Humanos , Fígado/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
4.
Nature ; 586(7829): 440-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698189

RESUMO

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Assuntos
Heterocromatina/metabolismo , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Imunidade Adaptativa , Animais , Feminino , Imunidade Inata , Deficiência Intelectual/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Síndrome de Rett/genética
5.
Proc Natl Acad Sci U S A ; 116(50): 25293-25303, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31772018

RESUMO

Microglia are essential for maintenance of normal brain function, with dysregulation contributing to numerous neurological diseases. Protocols have been developed to derive microglia-like cells from human induced pluripotent stem cells (hiPSCs). However, primary microglia display major differences in morphology and gene expression when grown in culture, including down-regulation of signature microglial genes. Thus, in vitro differentiated microglia may not accurately represent resting primary microglia. To address this issue, we transplanted microglial precursors derived in vitro from hiPSCs into neonatal mouse brains and found that the cells acquired characteristic microglial morphology and gene expression signatures that closely resembled primary human microglia. Single-cell RNA-sequencing analysis of transplanted microglia showed similar cellular heterogeneity as primary human cells. Thus, hiPSCs-derived microglia transplanted into the neonatal mouse brain assume a phenotype and gene expression signature resembling that of resting microglia residing in the human brain, making chimeras a superior tool to study microglia in human disease.


Assuntos
Encéfalo/fisiologia , Células-Tronco Pluripotentes Induzidas/transplante , Microglia/transplante , Animais , Encéfalo/metabolismo , Encéfalo/cirurgia , Expressão Gênica , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Camundongos , Microglia/metabolismo , Fenótipo
6.
Hum Mol Genet ; 26(17): 3327-3341, 2017 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-28595361

RESUMO

Mitochondrial dysfunction is a common feature of many genetic disorders that target the brain and cognition. However, the exact role these organelles play in the etiology of such disorders is not understood. Here, we show that mitochondrial dysfunction impairs brain development, depletes the adult neural stem cell (NSC) pool and impacts embryonic and adult neurogenesis. Using deletion of the mitochondrial oxidoreductase AIF as a genetic model of mitochondrial and neurodegenerative diseases revealed the importance of mitochondria in multiple steps of the neurogenic process. Developmentally, impaired mitochondrial function causes defects in NSC self-renewal, neural progenitor cell proliferation and cell cycle exit, as well as neuronal differentiation. Sustained mitochondrial dysfunction into adulthood leads to NSC depletion, loss of adult neurogenesis and manifests as a decline in brain function and cognitive impairment. These data demonstrate that mitochondrial dysfunction, as observed in genetic mitochondrial and neurodegenerative diseases, underlies the decline of brain function and cognition due to impaired stem cell maintenance and neurogenesis.


Assuntos
Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Células-Tronco Neurais/metabolismo , Animais , Fator de Indução de Apoptose/metabolismo , Encéfalo/metabolismo , Diferenciação Celular , Proliferação de Células , Cognição , Disfunção Cognitiva/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Doenças Neurodegenerativas/metabolismo , Neurogênese/genética , Neurogênese/fisiologia , Neurônios/metabolismo , Transdução de Sinais
7.
Cell Stem Cell ; 19(2): 232-247, 2016 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-27237737

RESUMO

Regulated mechanisms of stem cell maintenance are key to preventing stem cell depletion and aging. While mitochondrial morphology plays a fundamental role in tissue development and homeostasis, its role in stem cells remains unknown. Here, we uncover that mitochondrial dynamics regulates stem cell identity, self-renewal, and fate decisions by orchestrating a transcriptional program. Manipulation of mitochondrial structure, through OPA1 or MFN1/2 deletion, impaired neural stem cell (NSC) self-renewal, with consequent age-dependent depletion, neurogenesis defects, and cognitive impairments. Gene expression profiling revealed ectopic expression of the Notch self-renewal inhibitor Botch and premature induction of transcription factors that promote differentiation. Changes in mitochondrial dynamics regulate stem cell fate decisions by driving a physiological reactive oxygen species (ROS)-mediated process, which triggers a dual program to suppress self-renewal and promote differentiation via NRF2-mediated retrograde signaling. These findings reveal mitochondrial dynamics as an upstream regulator of essential mechanisms governing stem cell self-renewal and fate decisions through transcriptional programming.


Assuntos
Linhagem da Célula , Núcleo Celular/genética , Dinâmica Mitocondrial , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Transcrição Gênica , Trifosfato de Adenosina/farmacologia , Animais , Linhagem da Célula/efeitos dos fármacos , Linhagem da Célula/genética , Núcleo Celular/efeitos dos fármacos , Autorrenovação Celular/efeitos dos fármacos , Cognição/efeitos dos fármacos , GTP Fosfo-Hidrolases/metabolismo , Deleção de Genes , Metabolômica , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Dinâmica Mitocondrial/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Células-Tronco Neurais/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos
8.
J Vis Exp ; (95): 51983, 2015 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-25650557

RESUMO

Genetic deletion using the Cre-Lox system in transgenic mouse lines is a powerful tool used to study protein function. However, except in very specific Cre models, deletion of a protein throughout a tissue or cell population often leads to complex phenotypes resulting from multiple interacting mechanisms. Determining whether a phenotype results from disruption of a cell autonomous mechanism, which is intrinsic to the cell in question, or from a non-cell autonomous mechanism, which would result from impairment of that cell's environment, can be difficult to discern. To gain insight into protein function in an in vivo context, in utero electroporation (IUE) enables gene deletion in a small subset of cells within the developing cortex or some other selected brain region. IUE can be used to target specific brain areas, including the dorsal telencephalon, medial telencephalon, hippocampus, or ganglionic eminence. This facilitates observation of the consequences of cell autonomous gene deletion in the context of a healthy environment. The goal of this protocol is to show how IUE can be used to analyze a defect in radial migration in a floxed transgenic mouse line, with an emphasis on distinguishing between the cell autonomous and non-cell autonomous effects of protein deletion. By comparing the phenotype resulting from gene deletion within the entire cortex versus IUE-mediated gene deletion in a limited cell population, greater insight into protein function in brain development can be obtained than by using either technique in isolation.


Assuntos
Encéfalo/fisiologia , Movimento Celular/fisiologia , Eletroporação/métodos , Técnicas de Silenciamento de Genes/métodos , Neurônios/fisiologia , Proteína do Retinoblastoma/fisiologia , Proteína p107 Retinoblastoma-Like/fisiologia , Animais , Encéfalo/citologia , Embrião de Mamíferos , Feminino , Deleção de Genes , Masculino , Camundongos , Camundongos Transgênicos , Neurônios/citologia , Gravidez , Proteína do Retinoblastoma/genética , Proteína p107 Retinoblastoma-Like/genética
9.
Mol Cell Biol ; 33(14): 2797-808, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23689134

RESUMO

The involvement of nuclear factor kappa B (NF-κB) in several processes in the postnatal and adult brain, ranging from neuronal survival to synaptogenesis and plasticity, has been documented. In contrast, little is known about the functions of NF-κB during embryonic brain development. It is shown here that NF-κB is selectively activated in neocortical neural progenitor cells in the developing mouse telencephalon. Blockade of NF-κB activity leads to premature cortical neuronal differentiation and depletion of the progenitor cell pool. Conversely, NF-κB activation causes decreased cortical neurogenesis and expansion of the progenitor cell compartment. These effects are antagonized by the proneuronal transcription factor Hes6, which physically and functionally interacts with RelA-containing NF-κB complexes in cortical progenitor cells. In turn, NF-κB exerts an inhibitory effect on the ability of Hes6 to promote cortical neuronal differentiation. These results reveal previously uncharacterized functions and modes of regulation for NF-κB and Hes6 during cortical neurogenesis.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Subunidade p50 de NF-kappa B/metabolismo , Neocórtex/embriologia , Neurogênese , Proteínas Repressoras/metabolismo , Fator de Transcrição RelA/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Diferenciação Celular , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Genes Reporter , Células HEK293 , Humanos , Luciferases/biossíntese , Luciferases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B/metabolismo , Neocórtex/citologia , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/fisiologia , Cultura Primária de Células , Regiões Promotoras Genéticas , Transdução de Sinais , Técnicas de Cultura de Tecidos , Ativação Transcricional
10.
Cell Stem Cell ; 12(4): 440-52, 2013 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-23499385

RESUMO

The mechanisms through which cell-cycle control and cell-fate decisions are coordinated in proliferating stem cell populations are largely unknown. Here, we show that E2f3 isoforms, which control cell-cycle progression in cooperation with the retinoblastoma protein (pRb), have critical effects during developmental and adult neurogenesis. Loss of either E2f3 isoform disrupts Sox2 gene regulation and the balance between precursor maintenance and differentiation in the developing cortex. Both isoforms target the Sox2 locus to maintain baseline levels of Sox2 expression but antagonistically regulate Sox2 levels to instruct fate choices. E2f3-mediated regulation of Sox2 and precursor cell fate extends to the adult brain, where E2f3a loss results in defects in hippocampal neurogenesis and memory formation. Our results demonstrate a mechanism by which E2f3a and E2f3b differentially regulate Sox2 dosage in neural precursors, a finding that may have broad implications for the regulation of diverse stem cell populations.


Assuntos
Ciclo Celular , Fator de Transcrição E2F3/metabolismo , Células-Tronco Neurais/citologia , Células-Tronco Neurais/metabolismo , Fatores de Transcrição SOXB1/genética , Envelhecimento/metabolismo , Animais , Sequência de Bases , Contagem de Células , Ciclo Celular/genética , Linhagem da Célula/genética , Proliferação de Células , Embrião de Mamíferos/citologia , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Modelos Biológicos , Dados de Sequência Molecular , Neurogênese , Regiões Promotoras Genéticas/genética , Isoformas de Proteínas/metabolismo , Fatores de Transcrição SOXB1/metabolismo
11.
J Neurosci ; 32(24): 8219-30, 2012 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-22699903

RESUMO

During brain morphogenesis, the mechanisms through which the cell cycle machinery integrates with differentiation signals remain elusive. Here we show that the Rb/E2F pathway regulates key aspects of differentiation and migration through direct control of the Dlx1 and Dlx2 homeodomain proteins, required for interneuron specification. Rb deficiency results in a dramatic reduction of Dlx1 and Dlx2 gene expression manifested by loss of interneuron subtypes and severe migration defects in the mouse brain. The Rb/E2F pathway modulates Dlx1/Dlx2 regulation through direct interaction with a Dlx forebrain-specific enhancer, I12b, and the Dlx1/Dlx2 proximal promoter regions, through repressor E2F sites both in vitro and in vivo. In the absence of Rb, we demonstrate that repressor E2Fs inhibit Dlx transcription at the Dlx1/Dlx2 promoters and Dlx1/2-I12b enhancer to suppress differentiation. Our findings support a model whereby the cell cycle machinery not only controls cell division but also modulates neuronal differentiation and migration through direct regulation of the Dlx1/Dlx2 bigene cluster during embryonic development.


Assuntos
Fatores de Transcrição E2F/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Proteínas de Homeodomínio/biossíntese , Neurogênese/fisiologia , Proteína do Retinoblastoma/fisiologia , Fatores de Transcrição/biossíntese , Animais , Encéfalo/crescimento & desenvolvimento , Encéfalo/fisiologia , Contagem de Células/métodos , Feminino , Interneurônios/fisiologia , Masculino , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Gravidez , Transdução de Sinais/fisiologia
12.
J Proteomics ; 75(6): 1752-63, 2012 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-22240297

RESUMO

Hypertension is a systemic disorder affecting numerous physiological processes throughout the body. As non-alcoholic fatty liver disorder (NAFLD) is a common comorbidity of hypertension in humans, we hypothesized that molecular hepatic physiology would be altered in a model of genetic hypertension. Despite the broad use of the spontaneously hypertensive rat (SHR) model, little is known regarding how hypertension influences hepatic function under basal conditions. In order to determine whether hypertension induces changes in the hepatic protein expression suggestive of early stages of NAFLD, we compared the whole tissue proteome of livers from SHR and Wistar Kyoto (WKY) 16 week old rats using 2DGE and MALDI-TOF MS. Fifteen proteins were identified that display different levels of expression between the SHR and WKY livers: 50% of proteins have mitochondrial or anti-oxidant functions while 20% are involved in lipid metabolism. Quininoid dihydropterin reductase, sulfite oxidase, and glutathione-S-transferase mu 1 were all identified as either undergoing a difference in post-translation modification or a difference in protein abundance in SHR compared to WKY livers. As oxidative stress is a well described component of both NAFLD and hypertension in SHR, the identification of novel changes in protein expression provides possible mechanisms connecting these two pathologies in humans.


Assuntos
Fígado Gorduroso/fisiopatologia , Hipertensão/fisiopatologia , Fígado/metabolismo , Animais , Fígado Gorduroso/etiologia , Glutationa Transferase/metabolismo , Masculino , Hepatopatia Gordurosa não Alcoólica , Estresse Oxidativo/fisiologia , Oxirredutases/metabolismo , Ratos , Ratos Endogâmicos SHR , Ratos Endogâmicos WKY , Sulfito Oxidase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...